
1

Latency Measurement Protocol

Custom protocol specifications

Revision 2.0

2

Contents

1. Introduction and basic concepts ... 3

2. Packet format .. 4

3. Rules .. 6

4. C library and API documentation... 23

3

1. Introduction and basic concepts
LaMP (Latency Measurement Protocol) is a custom application layer protocol, which can be placed at

layer 7 of the ISO/OSI model.

This custom protocol has been specifically designed to support latency and RTT measurements using a

client-server paradigm and trying to make it as flexible as possible, making it independent on what it is

behind it in the protocol stack.

In fact, LaMP is meant to be encapsulated in any protocol, even directly inside raw Ethernet or 802.11

packets, to assess the latency performance of different devices using different protocols. The flexible

approach also allows the user to transmit additional data and perform other time-related custom

measurements.

Being it a client-server based protocol, it always require at least a LaMP client running on one device and

a LaMP server running on another device; then, thanks to specific header fields, including the

identification and sequence number, the protocol implementation should be able to handle also the case

of multiple clients and servers launched on the same machine.

Each client connecting to a specific server instance is part of a session, which is a single latency

measurement session, characterized by a very specific identification number, from 0 to 65535. Client and

servers are then referred, in this document, as entities.

In each session, packets are exchanged between two entities (one client and one server).

When a session is going to terminate, at least one entity belonging to a session should prepare a report,

containing at least the data listed in section 3.6, and present it to the user, store it locally or send it to

other processes.

Due to its latency measurement characteristics, the LaMP header always contain two fields to store a

microsecond-precision timestamp, which is managed by the entities participating in a measurement

session. Typically, a send timestamp should always be compared with a receive one, making, in the most

basic case, a subtraction to compute the latency between the two.

The exact instant in which a timestamp is placed inside a LaMP packet is left to the user, depending on

the kind of latency he or she wants to measure. Normally, the timestamp should be placed inside the

packet (or, in any case, should be retrieved) in the last possible instant before sending LaMP data, in order

to try to reduce the latency contribution due to the user application.

The next sections will cover more in details, trying to be short, how LaMP should work.

This protocol has been developed in Politecnico di Torino, at the DET department (department of

electronics and telecommunications) and its specifications are always meant to be open and available.

Revision 2.0 introduces new features to LaMP, including the follow-up mechanism (section 3.6), and fixes

some typographical errors inside the document.

4

2. Packet format
The LaMP packet is composed by a header and a payload. While the header length is fixed to 24B, the payload

is variable in length, ranging from 0 B to 65535 B. Moreover, the payload is not mandatory (except for the

INIT packets, see chapter 3) and can also be omitted (i.e. when “Length or packet type” is set to “0”).

The header is divided in 3 blocks of 8 B. The first block contains all the information related to the packet type,

sequence number, session id, and so on. The second and the third blocks are instead reserved respectively

for seconds and for microseconds timestamps. The entire packet format, with some hints for the field usage,

can be seen in the following table.

 it 0 0 0 0 0 0 0

0 0 ese ed
 ont o

 e en e o. en th o et t e
0 t e

 e imest m

 e imest m

 o d (o tion) to

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 ni o m(0 0000 0)

 n e sin om 0 0000 to 0

 et t e

 t e (o
)

 et t e

 o ow ont o
t e

 et t e

 im m e
0

 im m e 0

 n se o it is set to 0

 im m e 0
 n se o it is set to 0

 se de ined o d

5

The first byte is reserved and is always set to 0xAA. This allows the user to determine whether a packet is a

LaMP packet.

The second byte contains the control field: this information is used to identify the type of LaMP packet that

is being transmitted/received. This byte is subdivided in 2 sections of 4 bits: the first is always set to 0xA, as

an extension of the reserved field, while the latter encodes the packet type.

The third and the fourth bytes are used to identify the LaMP session. Since this protocol is meant to be used

in a client-server paradigm, having a session identifier allows the application using it to discriminate the

packets belonging to different instances and to open multiple sessions on the same terminal.

The fifth and the sixth bytes contain the sequence number of the packet, that is constantly increased (per-

session) and that helps the application to detect out-of-order packets or packet losses. Sequence numbers

are also used to associate the replies and the corresponding follow-up messages, when a follow-up

mechanism is used.

The last two bytes of the first block are used to determine the payload length or, in case the packet is of type

INIT, they define the type of connection that will be established (ping-like, i.e. bidirectional, or

unidirectional).

The second and the third block contain the 64bits timestamps for second and microseconds. Since the LaMP

protocol can also be used in timestampless fashion, these bytes may be set to 0.

The payload is user defined, meaning that it can be filled up with information depending on the user needs,

including encapsulating other protocols inside LaMP.

The next sections provide more detailed information about each field of the LaMP packet.

6

3. Rules
3.1. Packet types and usage

The LaMP protocol foresees different packet types, which are distinguished by the 4-bit e “Pkt Type”

inside the “Control” ie d o the oto o he de .

The following table lists all the currently available types and their usage.

For each packet type, the sending entity (client, server or both) is listed.

Packet type

Entity

Short name Control
field
value

Usage

Ping-like
(bidirectional)
request

Client

PINGLIKE_REQ 0xA0 This packet represents a typical ping-like
request, in which the client sends a
packet to the server and the server shall
reply with a corresponding ping-like
reply, like what happens in the ICMP
Echo Request/Reply mechanism.
The client is responsible for the insertion
of the timestamp inside the request
packet and to ensure that it is as much
accurate as possible.
At each transmission, the sequence
number must be increased.

Ping-like
(bidirectional)
reply

Server

PINGLIKE_REPLY 0xA1 This packet should be sent by the server
back to the client, upon receiving a
PINGLIKE_REQ.
The content of the packet (including the
timestamp) must be exactly the same as
the request received by the client, with
the exception of the control field, which
should be now set to 0xA1.
The payload should be typically the
same, but it is not mandatory, and can be
changed to transmit user defined data to
the client or to perform asymmetric
measurements with respect to the
payload size.

Ping-like
(bidirectional)
end request

Client

PINGLIKE_ENDREQ 0xA2 When the client is about to send the last
request of the current session, it shall
send, instead of a normal PINGLIKE_REQ,
a final request packet, in order to make
the server aware of the fact that this will
be the last packet of the session and let it
perform memory cleanup, reporting, and
other final operations.
The client is responsible for the insertion
of the timestamp inside the request
packet and to ensure that it is as much
accurate as possible.

7

Ping-like
(bidirectional)
end reply

Server

PINGLIKE_ENDREPLY 0xA3 When a PINGLIKE_ENDREQ is received by
the server, it should reply with a
PINGLIKE_ENDREPLY instead of a normal
one, respecting, however, all the rules
for normal server replies.

Unidirectional
continue

Client

UNIDIR_CONTINUE 0xA4 This packet must be used by a client to
send requests to a server when working
in the unidirectional mode.
Like in PINGLIKE_(END)REQ, a precise
timestamp must be set inside the
header, and will be used by the server to
compute the delta between the
timestamp extracted from the packet
and its own timestamp, which can be
obtained, for instance, as soon as the
UNIDIR_CONTINUE packet is received.
As the mode is now unidirectional, no
reply is expected from the server.
This packet also indicates that there will
be more packets after the current one
and the server should be ready to
process them.
At each transmission, the sequence
number must be increased.

Unidirectional
stop

Server

UNIDIR_STOP 0xA5 This packet must be used by a client to
send requests to a server when working
in the unidirectional mode.
Like in PINGLIKE_(END)REQ, a precise
timestamp must be set inside the
header, and will be used by the server to
compute the delta between the
timestamp extracted from the packet
and its own timestamp, which can be
obtained, for instance, as soon as the
UNIDIR_STOP packet is received.
As the mode is now unidirectional, no
reply is expected from the server.
This packet also indicates that the
session is going to be terminated and
that no unidirectional packets will follow
the current one.

Report data

Server(/Client)

REPORT 0xA6 This packet contains, inside its payload,
user-formatted report data, which is
exchanged between the client and
server, containing statistics about the
measured latency values and, possibly,
also about packet loss and out of order
packets.
Typically, it can be used by the server to
send back report data to the client, for
instance when working in unidirectional
(experimental) mode, to let the client

8

print all the report data even if the
computation is performed by the server.
This is not mandatory, though.
This packet must have a payload length
different than 0 and it must contain
report data inside the payload.
The format of the report data, which is
used to parse it when a REPORT is
received, is up to the user.
The timestamp is typically not required
(i.e. should be set to 0) but it can be
inserted by the user if needed.

Acknowledgment

Client/Server

ACK 0xA7 This is a typical general
acknowledgement packet, which can be
used by the client or by the server to
acknowledge the reception of a certain
packet.
It should be used to confirm the
reception of INIT and REPORT packets.
Typically an ACK does not contain any
 o d (i.e. “Length or packet type”
should be equal to 0), but the user can
include and manage a custom payload
and this should not be forbidden by any
protocol implementation, in order to
make it as much flexible as possible.
The timestamp is typically not required
(i.e. should be set to 0) but it can be
inserted by the user if needed.

Connection
initialization

Client

INIT 0xA8 This packet should be sent by any client
to perform an initial handshake with a
server, before starting any session, and
let the server set few session
parameters, such as the ID of the packets
it will accept.
This can be performed thanks to the
header fields contained inside the special
INIT packet.
INIT packet must be followed by an ACK,
sent by the server, to let the client know
that the server is ready.
After the INIT packet has been processed
by the server and an ACK has been
received by the client, the session can
start.
INIT packets must have no payload and
the “Length or packet type” set to
0x0001 to initiate a ping-like
(bidirectional) session and to 0x0002 to
initiate an unidirectional session. See
sections 3.4 and 3.5 for more detailed
information.

9

The timestamp is typically not required
(i.e. should be set to 0) but it can be
inserted by the user if needed.

Ping-like
(bidirectional)
request,
timestampless

Client

PINGLIKE_REQ_TLESS 0xA9 This packet type works exactly like
PINGLIKE_REQ, but it does not carry any
timestamp (i.e. both timestamp fields
must be set to 0).
In this case the client will be responsible
for keeping the send timestamp inside a
proper data structure, instead of placing
it inside the packet, in order to store it
and compare it with the receive
timestamp, which can be obtained, for
instance, as soon as a timestampless
reply is received from the server.

Ping-like
(bidirectional)
reply,
timestampless

Server

PINGLIKE_REPLY_TLESS 0xAA This packet type works exactly like
PINGLIKE_REPLY, but it does not carry
any timestamp (i.e. both timestamp
fields must be set to 0).

Ping-like
(bidirectional)
end request,
timestampless

Client

PINGLIKE_ENDREQ_TLESS 0xAB This packet type works exactly like
PINGLIKE_ENDREQ, but it does not carry
any timestamp (i.e. both timestamp
fields must be set to 0).

Ping-like
(bidirectional)
end reply,
timestampless

Server

PINGLIKE_ENDREPLY_TLESS 0xAC This packet type works exactly like
PINGLIKE_ENDREPLY, but it does not
carry any timestamp (i.e. both timestamp
fields must be set to 0).

Follow-up control

Client/Server

FOLLOWUP_CTRL 0xAD This packet embeds the follow-up
mechanism control data.
These packets must have no payload and
the “Length or packet type” he de ie d
set to a different value depending on the
control data to transmit.
As a client wants to use the follow-up
mechanism, in which each reply (ping-
like) or unidirectional message
(unidirectional) is followed by a follow-up
data packet carrying additional time
information (to increase the latency
measurement accuracy), it should issue a
follow-up request, setting this field to
0x00__.
The last byte, from 0x__00 to 0x__FF, is
used to specify a type of request (see
section 3.6).

10

Then, the server can accept or deny the
request, by sending back another follow-
 ont o et with “Length or packet
type” set to

• 0x0100 for deny

• 0x0200 for accept

• 0xFFFF when a badly formatted
or unknown request (according
to the type) is received

In case the request is accepted, the
session can start with the follow-up
mechanism, otherwise no follow-up
should be used by both the client and the
server.

Follow-up data

Server/Client

FOLLOWUP_DATA 0xAE This packet embeds the follow-up
mechanism timestamp data.
This packet, when the follow-up
mechanism is active and it has been
negotiated by the client and the server,
should carry timestamp data coming
from the sending entity, depending on
the connection type:

• Ping-like mode: the best possible
estimate of the processing time
spent by the server when
managing a request and
preparing/sending the
corresponding reply; the
embedded timestamp should
represent a time delta instead of
a single timestamp

• Unidirectional mode: the best
possible estimate of the
transmission timestamp, related
to the packet immediately
preceding the follow-up
message, when it is possible to
retrieve a send timestamp which
is more precise than any
timestamp which can be
embedded inside
UNIDIR_CONTINUE or
UNIDIR_STOP packets.

Reserved

-

- 0xAF This control field value is reserved for
future use and it should never be used in
any LaMP packet.

11

3.2. Header fields management

The following table lists all the header fields for each packet type, describing how they shall be managed

according to the current LaMP packet.

Packet type Res Ctrl ID Sequence
number

Len or packet
type

Sec
Timestamp

uSec
Timestamp

Payload

PINGLIKE_REQ 0xAA 0xA0 Unique random ID
for each session;
must be same as
the one sent
within the INIT
packet

Increasing (by
1 or with any
user-defined
rule)

Length of the
payload

Required Required Optional

PINGLIKE_REPLY 0xAA 0xA1 Unique random ID
for each session,
same as request

Same as
request

Length of the
payload

Same as
request

Same as
request

Optional

PINGLIKE_ENDREQ 0xAA 0xA2 Same ID as the
previous
PINGLIKE_REQ

Increasing (by
1 or with any
user-defined
rule)

Length of the
payload

Required Required Optional

PINGLIKE_ENDREPLY 0xAA 0xA3 Unique random ID
for each session,
same as end
request

Same as end
request

Length of the
payload

Same as
end request

Same as
end request

Optional

UNIDIR_CONTINUE 0xAA 0xA4 Unique random ID
for each session;
must be same as
the one sent
within the INIT
packet

Increasing (by
1 or with any
user-defined
rule)

Length of the
payload

Required Required Optional

UNIDIR_STOP 0xAA 0xA5 Same ID as the
previous
UNIDIR_CONTINUE

Increasing (by
1 or with any
user-defined
rule)

Length of the
payload

Required Required Optional

REPORT 0xAA 0xA6 Same ID as the one
used in the current
session

Starting from
0, then
increased by 1
at each
retransmission
attempt

Length of the
payload.
Must be
different
than 0.

Optional
(typically
not
required)

Optional
(typically
not
required)

Required
and
containing
report
data (i.e.
statistics)

ACK 0xAA 0xA7 Same ID as the one
used in the current
session

Starting from
0, then
increased by 1
at each
retransmission
attempt

Typically 0; if
a payload is
really
needed, it
contains it
length.

Optional
(typically
not
required)

Optional
(typically
not
required)

Optional
(typically
not
required)

INIT 0xAA 0xA8 Unique random ID
for each session

Starting from
0, then
increased by 1
at each
retransmission
attempt

Connection
INIT type:
0x0001 for
ping-like,
0x0002 for
unidirectional

Optional
(typically
not
required)

Optional
(typically
not
required)

No

PINGLIKE_REQ
_TLESS

0xAA 0xA9 Unique random ID
for each session;
must be same as
the one sent
within the INIT
packet

Increasing (by
1 or with any
user-defined
rule)

Length of the
payload

No (set to 0) No (set to 0) Optional

PINGLIKE_REPLY
_TLESS

0xAA 0xAA Unique random ID
for each session,
same as request

Same as
request

Length of the
payload

No (set to 0) No (set to 0) Optional

12

PINGLIKE_ENDREQ
_TLESS

0xAA 0xAB Same ID as the
previous
PINGLIKE_REQ
_TLESS

Increasing (by
1 or with any
user-defined
rule)

Length of the
payload

No (set to 0) No (set to 0) Optional

PINGLIKE_ENDREPLY
_TLESS

0xAA 0xAC Unique random ID
for each session,
same as end
request

Same as end
request

Length of the
payload

No (set to 0) No (set to 0) Optional

FOLLOWUP_CTRL 0xAA 0xAD Same ID as the one
used in the current
session

Starting from
0, then
increased by 1
at each
retransmission
attempt

Follow-up
control
message
type:
0x00__ for
request (the
last byte is
used to
specify a type
of request)
0x0100 for
(reply) deny
0x0200 for
(reply) accept
0xFFFF for
bad or
unknown
request
received

No (set to 0) No (set to 0) No

FOLLOWUP_DATA 0XAA 0xAE Same ID as the one
used in the current
session

Same as the
reply to which
the follow-up
packet is
referred

Length of the
payload

Required:
estimate of
internal
application
time to be
subtracted
from the
computed
latency/RTT.

Required:
estimate of
internal
application
time to be
subtracted
from the
computed
latency/RTT.

Optional
(typically
not
required)

(Reserved) 0xAA 0xAF - - - - - -

13

3.3. Sequence numbers

Sequence numbers shall be used:

▪ In INIT, ACK, REPORT and FOLLOWUP_CTRL packets, always starting from 0, to identify each

retransmission attempt. In this case they should always be increased by 1, until a user-defined

maximum number of retransmissions is reached.

▪ In all the other packets: they can start from any user defined value, and increased by 1 or following

any increasing user defined rule. They are used, as highlighted before, to associate replies with

requests and, possibly, to compute a packet loss and out-of-order count.

Typically, the suggestion is to always start from 0 and increase them by 1, but no rule is strictly

defined in order to maintain flexibility within the protocol specifications. However, if no well-

tested and well-defined rule can be defined and documented, the user shall start from 0 and

increase the sequence numbers by 1.

Sequence number are stored in a 16 bit field of the LaMP header, thus their maximum value is 65535

(0xFFFF). They shall be cyclically increased when such a maximum value is reached, starting back from 0.

14

3.4. Ping-like operating mode

When operating in ping-like mode (RTT measurements) the transmission and reception of latency

measurement packets should happen in a similar way to the ICMP Echo Request/Reply mechanism, with

few additional operations, respecting all the rules defined in the previous sections.

I. The connection is always initiated by the client, which should send an INIT packet to the server.

The INIT packet may contain a timestamp in order to perform any time initialization operation

from the server side, but it is not required and in the most common cases can be omitted (i.e.

leaving it to 0, for what concerns both the Sec and uSec fields).

The initialization packet shall also contain a random ID, stored inside the 16 bit field of the LaMP

header (it can be any number from 0 to 65535) and kept as it is until the session is terminated.

 he “Length or packet type” ie d sho d be set to 0x0001.

II. The server, upon receiving the INIT packet, should use its content to set the ID and the session

type (i.e. ping-like). Then, the server should accept only packets containing that ID and using the

mode s e i ied inside the “Length or packet type” field of the INIT packet. The server can

optionally gather statistics about the INIT retransmission attempts, using the sequence numbers,

and perform other user defined time related operations, in case a timestamp was inserted inside

the packet.

III. After properly processing the INIT packet, the server should send back an ACK packet to the client,

which will be informed about the server being ready to start the current measurement session.

IV. In the mean time, the client should repeat the transmission of the INIT packet, using a

transmission interval defined by the user, until the ACK is received from the server or until a

certain number of attempts is reached. In the last case, the client should terminate the current

session. If no packets are lost, a single INIT-ACK transmission should occur, i.e. in ideal

channel/link conditions, with no losses, the server should be fast enough to reply to the client

before the first retransmission occurs and the client should not set a period which is too short,

causing unnecessary retransmissions towards the server.

V. After the INIT-ACK procedure is completed, the client can start sending normal or timestampless

packets to the server (PINGLIKE_REQ or PINGLIKE_REQ_TLESS):

1. In case normal packets are sent (PINGLIKE_REQ), the client should prepare them

according to the rules specified before. It will set an initial sequence number, which will

be then increased by 1 (or using a user defined rule) for each request transmission and

optionally fill the payload.

If a payload is used, the “Length or packet type” ie d sho d be different than 0 and equal

to the number of bytes contained inside the payload. The payload can contain random

data, which will not be parsed neither by the client (when receiving the corresponding

reply) nor by the server, in order to perform latency measurements with different payload

sizes, or it can contain meaningful data which can be parsed by the client (upon reception

of the reply) or by the server. This allows user defined per-packet data to be easily

transmitted between entities using LaMP.

It is mandatory to set a timestamp inside the packet. The timestamp can be obtained and

placed inside the header at any time, using system calls such as gettimeofday(), under

Linux, depending on the kind of latency measurement the user wants to perform.

Typically, the timestamp should be set in the last possible instant before sending the

packet, in order to reduce the application latency as much as possible.

2. In case timestampless packets are sent (PINGLIKE_REQ_TLESS), all the rules described in

(1) apply, but for the insertion of the timestamp, which must be left to all zeros.

15

In this case the client will be responsible for storing the transmit timestamp in a local data

structure.

This data structure should then be used to retrieve the transmit timestamp corresponding

to the received timestampless replies, and, together with a receive timestamp obtained

by the client upon reception of the replies (for instance, under Linux, by means of

gettimeofday() or CSMG ancillary data), to compute the latency values by subtracting the

obtained received timestamp with the stored transmit timestamp.

This mode has been inserted in order to support hardware transmit timestamps under

Linux, which are returned, when supported, as ancillary data, and thus cannot be easily

embedded inside the requests which are sent to the server.

VI. The server shall reply, after the INIT-ACK procedure is complete, to all the client requests with the

correct ID and mode (i.e. in case of ping-like operations it shall accept all the PINGLIKE_REQ,

PINGLIKE_ENDREQ, PINGLIKE_REQ_TLESS and PINGLIKE_ENDREQ_TLESS packets, provided that

the ID is correct).

The replies shall replicate the same exact content of the requests (including the received

timestamp, set by the client), but for the packet type, which should be set to PINGLIKE_REPLY or

PINGLIKE_REPLY_TLESS. The payload, in standard latency measurements with a defined payload

size, should remain the same, but it is not mandatory and it can change when the user wants to

transmit additional user defined data to the client or when performing (but it is a quite uncommon

situation) asymmetric ping-like latency measurements with respect to the payload size.

VII. As the client receives a reply from the server, it should use it to gather statistics, perform time

related operations and possibly parse the payload, if it contains meaningful data.

The most important operation a client should perform is the latency computation. In case

standard packets are used, the client should extract the timestamp stored inside the reply packet

(which reflects the timestamp the client set inside the corresponding request) and compare it

with the receive timestamp, which can be obtained depending on the user needs. Under Linux,

this receive timestamp can be obtained, for instance, with gettimeofday(), called just after

recognizing that the current packet, received through a socket, is of interest (i.e. if it is LaMP, it is

a reply and it has the correct ID) or by means of ancillary data.

In case timestampless packets are used instead, the client, as stated before, is responsible for

keeping the send timestamps (which can be obtained, for instance, by means of ancillary data,

when using Linux) and compare them with the correct receive timestamps, following any user

defined policy, which should be documented together with the application using LaMP.

VIII. When the client is about to terminate its session, it should send the last request packet as an end

request one, respecting all the rules defined before for client requests and setting its type to

PINGLIKE_ENDREQ, for normal packets, or PINGLIKE_ENDREQ_TLESS, for timestampless packets.

This will inform the server about the intention to terminate the current session, letting it perform

memory cleanup, reporting, computation and other operations.

IX. Upon reception of a PINGLIKE_ENDREQ or PINGLIKE_ENDREQ_TLESS packet, the server should

reply with a PINGLIKE_ENDREPLY or PINGLIKE_ENDREPLY_TLESS respectively, following all the

rules described in (VI). It can then consider the session as terminated and can initiate the

execution of the final memory cleanup and reporting operations.

X. When receiving an end reply packet, the client can consider the session as terminated too and

can initiate the execution of the final memory cleanup and reporting operations.

XI. Optionally, the server and/or the client can start exchanging report data and gather statistics, to

be used inside the application or to be displayed to the user.

Each data exchange should occur in the following way:

1. The report data sender (client or server) should start sending the report data, inside
the payload of REPORT packets, at periodic intervals, defined by the user, until a

16

certain number of retransmissions is reached (the first is the real transmission, the
other ones are retransmissions of the same packet, with an increased sequence
number).

2. The report data receiver (server or client) should acknowledge the sender, with ACK
packets, just after a correct report packet is received and parsed. The receiver is
responsible for parsing all the data contained within the REPORT packets.

3. The sender, as soon as an ACK is received, should stop sending report packets. This
shall also happen when the maximum number of retransmissions is reached. In this
case the connection should be considered lost and countermeasures should be taken
by the application.

4. A new data exchange, if required, can then take place following the rules defined in
(1), (2) and (3).

Note: the insertion of a timestamp inside ACK packets is not requires and it should not be in
all the standard cases. If, however, a timestamp is added in order to perform additional
specific operations in addition to the data exchange, it is up to the receiver of the ACK packet
to manage such data.

XII. The client and server should then declare the LaMP session as terminated and continue (or

terminate) their execution with other operations (including, possibly, starting a new LaMP session

or reporting to the user all the gathered statistics about the measured latency values). A way to

report at least the latency data should always be implemented in at least one entity (i.e. in at least

one client or server for each session), following section 3.6.

17

3.5. Unidirectional operating mode

Other than the normal ping-like (bidirectional) operating mode, an additional unidirectional mode is

supported by LaMP, to enable one-way latency measurements.

In this mode, the client should not expect any reply from the server, as the communication is always

performed in one direction only (i.e. from client to server).

Each packet should always embed a timestamp, placed by the client, that shall be used by the server to

try to compute the latency or perform other time-related computations, by extracting and comparing it

to a local timestamp. As the two timestamps are now obtained inside different devices, this mode can

work only when the clocks in the tested devices are very precisely synchronized, possibly with under-

millisecond precision.

Since the way in which the clock are synchronized is not managed by LaMP, this mode should, at the

moment, be considered as experimental.

LaMP, as of revision 2.0, shall rely on external protocols to keep the clocks synchronized (for instance the

Network Time Protocol - NTP - or the Precision Time Protocol - PTP).

The operating mode should work as follows:

I. The connection is always initiated by the client, which should send an INIT packet to the server.

The INIT packet may contain a timestamp in order to perform any time initialization operation

from the server side, but it is not required and in the most common cases can be omitted (i.e.

leaving it to 0, for what concerns both the Sec and uSec fields).

The initialization packet shall also contain a random ID, stored inside the 16 bit field of the LaMP

header (it can be any number from 0 to 65535) and kept as it is until the session is terminated.

 he “Length or packet type” ie d sho d be set to 0x0002.

II. The server, upon receiving the INIT packet, should use its content to set the ID and the session

type (i.e. unidirectional). Then, the server should accept only packets containing that ID and using

the mode s e i ied inside the “Length or packet type” ie d o the et. he se e n

optionally gather statistics about the INIT retransmission attempts, using the sequence numbers,

and perform other user defined time related operations, in case a timestamp was inserted inside

the packet.

III. After properly processing the INIT packet, the server should send back an ACK packet to the client,

which will be informed about the server being ready to start the current measurement session.

IV. In the meantime, the client should repeat the transmission of the INIT packet, using a transmission

interval defined by the user, until the ACK is received from the server or until a certain number of

attempts is reached. In the last case, the client should terminate the current session. If no packets

are lost, a single INIT-ACK transmission should occur, i.e. in ideal channel/link conditions, with no

losses, the server should be fast enough to reply to the client before the first retransmission

occurs and the client should not set a period which is too short, causing unnecessary

retransmissions towards the server.

V. After the INIT-ACK procedure is completed, the client can start sending UNIDIR_CONTINUE

packets. These packets must always embed a timestamp (that is also why there are no

undirectional timestampless packets).

The timestamp can be obtained and placed inside the header at any time, using system calls such

as gettimeofday(), under Linux, depending on the kind of latency measurement the user wants to

perform.

18

Typically, the timestamp should be set in the last possible instant before sending the packet, in

order to reduce the application latency as much as possible, but as this mode is experimental, it

is up to the user to decide (and then document) when to set the timestamp.

The client should prepare all the unidirectional packets according to the rules specified before. It

will set an initial sequence number, which will be then increased by 1 (or using a user defined

rule) for each request transmission and optionally fill the payload.

 o d is sed the “Length or packet type” ie d sho d be di e ent than 0 and equal to the

number of bytes contained inside the payload. The payload can contain random data, which will

not be parsed by the server, in order to perform latency measurements with different payload

sizes, or it can contain meaningful data which can be parsed by the by the server. This allows user

defined per-packet data to be easily transmitted from the client to the server.

VI. The server should receive all the UNIDIR_CONTINUE and UNIDIR_STOP packets with the correct

ID, but it shall not reply to the client. Instead, it shall extract the timestamp embedded inside the

packet and compare it to a local receive timestamp in order to try to obtain latency measurement

data. Please note that this mode, when the clocks are not very precisely synchronized, can provide

meaningless data or even negative latency values.

In case negative values are detected, it is up to the user to decide what countermeasures to take.

VII. When the client is about to terminate its session, it should send a UNIDIR_STOP packet, respecting

all the rules defined before in (V).

This will inform the server about the intention to terminate the current session, letting it perform

memory cleanup, reporting, latency computation and other operations.

VIII. Upon reception of a UNIDIR_STOP packet, the server can then consider the session as terminated

and can initiate the execution of the final memory cleanup and reporting operations. As the server

is now responsible of reporting the latency information to the user or to other software modules,

it should manage a report containing at least the fields defined in section 3.6.

The report can then be shown to the user, stored internally, sent to other running processes or

sent to the client (see point (IX)), which can perform all these operation on the sender device.

IX. Optionally, the server can send back the report data to the client. The data exchange should follow

the procedure described in point (XI) of section 3.4 (ping-like operating mode).

X. The client and server should then declare the LaMP session as terminated and continue (or

terminate) their execution with other operations (including, possibly, starting a new LaMP session

or reporting to the user all the gathered statistics about the measured latency values). A way to

report at least the latency data should always be implemented in at least one entity (i.e. in at least

one client or server for each session), following section 3.6; if no data exchange occurs, it shall be

implemented inside the server.

19

3.6. Follow-up mechanism

Follow-up packets are types of packets which are sent just after normal LaMP packets, in order to provide

additional time information which could not be embedded in the original packet.

Both the modes described in sections 3.4 and 3.5 support an additional follow-up mechanism, which can be

used to provide a more precise estimate of the network latency or RTT, relying on follow-up packets which

are sent after each reply (by the server in ping-like mode) or unidirectional packet (by the client in

unidirectional mode) and which contain additional timestamp data to improve the initial measurement,

which is normally based only on the time of transmission and reception of the request and reply packets.

The usage of this mode is optional, and it should be never set as the default one.

The follow-up mechanism is an addition to what is presented in sections 3.4 and 3.5 and it foresees the

following additional steps:

I. After the INIT procedure, if the client wants to activate the follow-up mechanism, it should send a

FOLLOWUP_CTRL packet, with its “Length or packet type” ie d set to 0x00__ (i.e. it should send a

follow-up control request packet). The last byte should be set according the table presented in

section 3.6.1.

The same session ID as the INIT procedure shall be used.

II. Upon the reception of the request, the server should reply with another FOLLOWUP_CTRL packet,

using the same session ID, and with its “Length or packet type” ie d set to:

• 0x0100 in order to deny the request, telling the client that no follow-up mode should be

used. This may be the case for instance of an unsupported request type (see section 3.6.1)

or an unsupported follow-up mode.

In this case the client must not use the follow-up mechanism and the measurement session

should start as described in sections 3.4 or 3.5 without involving any follow-up packet.

• 0x0200 in order to accept the request, including the conditions imposed by the request type.

• 0xFFFF in order to inform the client about a bad or unknown request. As request types may

not be implemented by the server, 0xFFFF should be used to inform the client about an

unknown, badly formatted or unimplemented follow-up type. This response should be

treated as a deny and no follow-up mechanism should be used.

III. If the request has been accepted, the follow-up mechanism should be used until the end of the

session.

In ping-like mode, the server, upon receiving each request and sending the corresponding reply,

should estimate in the best possible way the time between the reception of the request and the

transmission of the reply, i.e. its overall “processing time”.

It should then prepare a FOLLOWUP_DATA packet, with an optional payload (which is normally not

inserted), and embedding, in the timestamp fields of the LaMP header, the previously computed time

difference. This packet shall be sent back to the client as soon as possible and just after sending the

reply packet. The client should then report the measured RTT value by subtracting the server

processing time, gathered from the follow-up packet, from its computed latency value (the one which

could be computed without using the follow-up mechanism). Thanks to this additional timestamp

data, the client entity shall be then able to obtain a more precise measurement of the network RTT,

without taking into account the server processing time.

In unidirectional mode, the client should send to the server, after and in addition to each

UNIDIR_CONTINUE or UNIDIR_STOP packet, a FOLLOWUP_DATA packet, embedding, in the

timestamp fields of the LaMP header, the best possible estimate of the transmission timestamp,

according to the request type negotiated before.

20

When the clocks are synchronized, this timestamp can be used to estimate in a more precise manner

the client transmission time.

Follow-up packets in unidirectional mode are useful if and only if it is possible to obtain a more

precise estimate of send timestamps than what can be included inside any UNIDIR_CONTINUE and

UNIDIR_STOP packet, according to section 3.5.

3.6.1. Follow-up control request types

When sending a follow-up request, the “Length or packet type” ie d should be set with the first byte to 0x00

and the last byte specifying a type of request, as detailed in the following table.

It is not mandatory for a server to implement all the request types and follow-up mechanisms described

below.

If LaMP is not implemented over an underlying operating system, only the follow-up modes resulting from

the 0x00 and 0x03 request types can be implemented, together with other user defined requests, if needed.

0x01 and 0x02 shall always result in a 0xFFFF reply, in this case.

Last byte “
 ”

Description

0x00 0x0000 Use application level timestamps, when possible, to
compute the timestamp data to be sent in the
follow-up data packets.
Timestamps should be gathered by the application
itself trying to estimate the processing
time/transmission time in the best way possible.

0x01 0x0001 Use kernel level receive timestamps, when possible,
to compute the timestamp data to be sent in the
follow-up data packets.
Transmit timestamps are still at an application level.

0x02 0x0002 Use kernel level receive and transmit timestamps,
when possible, to compute the timestamp data to
be sent in the follow-up data packets.

0x03 0x0003 Use hardware level timestamps, when possible, to
compute the timestamp data to be sent in the
follow-up data packets.

0x04-0xEF 0x0004-0x00EF Reserved for future use.

0xF0-0xFF 0x00F0-0x00FF User defined request.

The meaning of the request type varies depending on the operating mode:

• In ping-like operating mode, it represents a requested type of follow-up timestamp data,

which is requested by the client and accepted or denied by the server, which will, eventually,

gather timestamps according to the kind of received request.

• In unidirectional mode, it represents a way to inform the server about which kind of

timestamp data will be embedded by the client in the follow-up packets, which will be sent

after each UNIDIR_CONTINUE or UNIDIR_STOP packet. Types 0x01 and 0x02 are the same as

far as a unidirectional session is started.

21

3.7. Latency statistics standard format and required report fields

LaMP also defines a minimum number of data that should be gathered inside a report, when using it to

measure the latency between different devices, and then used to inform the user or other

applications/modules about the measured values.

This minimum number of data can be integrated with any number of user defined measurements and it

is up to the application to manage it in a correct and efficient way.

It is important to highlight that each session should be performed by sending more than one

request/reply, in order to obtain more meaningful data and filter out possible outliners.

The following table resumes the minimum set of measurements (each measurement is called report field)

which should be performed for each session:

Required report field Unit/Resolution Description

Average latency μs Average latency over N measurements, as:
∑ 𝐿𝑁
𝑁

Where 𝐿 is a single latency measurements,
obtained thanks to the stored/sent timestamps.

Minimum latency μs Minimum latency value over N collected values.

Maximum latency μs Maximum latency value over N collected values.

Number of lost packets # Number of packets which were lost during the
test. They shall be computed using the LaMP
header sequence numbers.

Number of packets with errors # Number of packets which were not lost during
the test, but which contained or caused errors,
making the latency or RTT computation
impossible. These packets shall be counted, but
they shall never be used for the final latency
statistics.

Each application should also document (and, optionally, report to the user) how the timestamps used to

compute the latency values are obtained, possibly supporting more than one way of obtaining them. In

this case, the type of latency measurement should be reported to the user in addition to the required

report fields presented before.

22

3.8. Timeouts

In case some critical packets are lost, in particular PINGLIKE_ENDREQ, PINGLIKE_ENDREPLY (and their

timestampless variants), UNIDIR_STOP, ACK and FOLLOWUP_CTRL, the application may risk to wait

indefinitely for a packet that, potentially, may never be received, not terminating the current session as

expected.

In this case, the application must set a receive timeout on any structure defined to receive LaMP packets.

For instance, in case sockets are used, the application shall set a socket receive timeout.

It is completely up to the user to define a reasonable value.

When the timeout expires, the interested entity (a client or a server) shall perform all the memory cleanup

and final operations to safely terminate the current session.

23

4. C library and API documentation
4.1. Rawsock library and Linux support

The LaMP protocol can be managed through the additional LaMP module of the Rawsock library (version

0.2.0 and newer).

As this library is Linux only, users can also define they own libraries to support LaMP, following the core

API documentation in section 4.2.

As the Rawsock library is still at an initial development stage, any contribution or improvement, both to

the library and/or this document is highly welcome.

The rawsock_lamp module, inside the Rawsock library, contains functions to populate the LaMP header,

fill some specific fields and encapsulate an (optional) payload inside the LaMP packet, without making the

user worry about structure packing, byte ordering or other low level network related problems.

This module also provides a structure, struct lamphdr, which contains all the header data and which can

be used like other Linux structures for packet headers, such as struct iphdr or struct ether_header.

Each application using LaMP should declare a struct lamphdr and manage it though the available library

functions. In particular, when sending a LaMP packet, the application should first populate the header

with the required data, then insert an optional payload and merge it with the header, setting also the

“Length or packet type” ie d nd send the et sing any underlying protocol.

When receiving LaMP packet, instead, the application must first fill a buffer with the complete packet,

then extract the relevant information from the header and use them to check whether the packet is of

interest. If it is (i.e. if it has the right type and ID), it shall proceed to extract from the header, using the

lampHeadGetData() function, all the relevant information, including the timestamp (if the packet is not

an ACK, INIT, REPORT or TLESS one) and use them to perform the operations described in chapter 3.

The complete library documentation can be found when downloading it and it is maintained and

generated through Doxygen.

4.2. API documentation

In order to code your own library supporting LaMP, there is a minimal set of types, structures and

functions that shall be defined.

To improve efficiency, some functions are defined to change specific header fields, in order to call the full

header population function only once or, at least, the minimum possible number of times.

The user is then free to define any other useful function, type, macro or definition, which should be

considered as a custom one and properly documented.

The required objects are listed in the following sections.

4.2.1. Required types

Type Description

byte_t 8 bit unsigned integer to store a single byte. In C, this can be
defined as unsigned char.

lamptype_t Enumerator containing the LaMP packet types, strictly
following the order of the table presented in section 3.1

24

lamp_uint8_t 8 bit unsigned integer. Can be replaced with uint8_t, if
available (i.e. no need to define this type).

lamp_uint16_t 16 bit unsigned integer. Can be replaced with uint16_t, if
available (i.e. no need to define this type).

lamp_uint64_t 64 bit unsigned integer. Can be replaced with uint64_t, if
available (i.e. no need to define this type).

struct timefields This structure should contain two fields to store a seconds and
microseconds timestamp.
It can be replaced, when available, with struct timeval.

lamp_size_t This type should contain the length of any LaMP buffer.
It can be replaced, when available, with size_t.

4.2.2. Required structures

Structure Description

struct lamphdr Structure containing the LaMP header. It shall have the following fields:
struct lamphdr {
 lamp_uint8_t reserved;
 lamp_uint8_t ctrl;
 lamp_uint16_t id;
 lamp_uint16_t seq;
 lamp_uint16_t len;
 lamp_uint64_t sec;
 lamp_uint64_t usec;
};

4.2.3. Required macros and defines

Macro Description

#define ETHERTYPE_LAMP
0x88B5

As LaMP can be encapsulated inside any other packet, when it
is encapsulated directly inside an Ethernet packet it should carry
the Local Experimental Ethertype, which can be specified by
means of ETHERTYPE_LAMP.
If the 0x88B5 is already defined as an operating system
constant, it is suggested to use that instead of 0x88B5 inside this
declaration.

#define MAX_LAMP_LEN
(65535)

Maximum payload size, in bytes, that can be transmitted or
received inside a LaMP packet.

#define
LAMP_HDR_PAYLOAD_SIZE(size)
sizeof(struct lamphdr)+size

This macro returns the size of a LaMP packet with a payload of
size bytes.

#define LAMP_HDR_SIZE()
sizeof(struct lamphdr)

This macro returns the size of a LaMP header.

#define TYPE_TO_CTRL(field)
(field | 0xA0)

This macro allows the user to convert a lamptype_t value
(specified as fields, 4 bits) to the corresponding full control
field (ctrl) value (0xA + 4 type bits).

#define CTRL_TO_TYPE(field)
(field & 0x0F)

This macro allows the user to convert a full control field (ctrl)
value (0xA + 4 type bits) to the corresponding lamptype_t
value (4 bits).

25

4.2.4. Required functions

Function Full prototype and description

lampHeadPopulate() void lampHeadPopulate(struct lamphdr
*lampHeader, unsigned char ctrl, unsigned
short id, unsigned short seq);

This function should be used to populate a LaMP header
(struct lamphdr), which is passed by the user as a pointer.

The user shall specify an already existing LaMP header
structure to be filled in, the control field value, as ctrl, the
identification value and the sequence number of the current
packet.

This function should initialize both the timestamp fields to 0.
Then, a call to lampHeadSetTimestamp() will be needed
to insert a timestamp (or, if defined, any call to additional
custom functions). This is not required when using
timestampless packets.

The function shall manage the byte order (i.e. the conversion
from host to network byte order).

lampHeadSetTimestamp() void lampHeadSetTimestamp(struct lamphdr
*lampHeader, struct timeval *tStampPtr);

This function takes as input an already prepared LaMP
header structure and fills its timestamp field either with the
data passed through the tStampPtr pointer (which should
point to a custom timestamp) or, when this argument is
NULL, with the current time, which can be obtained
according to any valid method in the target operating system.

lampSetUnidirStop() void lampSetUnidirStop(struct lamphdr
*lampHeader);

This function takes as input an already prepared LaMP
header structure and sets its type to UNIDIR_STOP. It should
be called to change the packet type in the ctrl field when
the client is about to send the last packet of the current
session.

lampSetPinglikeEndreq() void lampSetPinglikeEndreq(struct lamphdr
*lampHeader);

This function takes as input an already prepared LaMP
header structure and sets its type to PINGLIKE_ENDREQ. It
should be called to change the packet type in the ctrl field
when the client is about to send the last packet of the current
session.

lampSetPinglikeEndreqTless() void lampSetPinglikeEndreqTless(struct
lamphdr *lampHeader);

26

This function takes as input an already prepared LaMP
header structure and sets its type to
PINGLIKE_ENDREQ_TLESS. It should be called to change the
packet type in the ctrl field when the client is about to send
the last packet of the current session.

lampSetPinglikeEndreqAll() void lampSetPinglikeEndreqAll(struct lamphdr
*lampHeader);

This function is a combination of the previous two.
This function takes as input an already prepared LaMP
header structure and it checks the packet type.
If it is PINGLIKE_REQ, PINGLIKE_ENDREQ will be set as new
type.
If it is PINGLIKE_REQ_TLESS, PINGLIKE_ENDREQ_TLESS will
be set as new type.
It is neither PINGLIKE_REQ nor PINGLIKE_REQ_TLESS, no
operation should be performed.
It should be called to change the packet type in the ctrl
field when the client is about to send the last packet of the
current session and it should be preferred over the two
previous functions, when possible.

lampHeadSetConnType() void lampHeadSetConnType(struct lamphdr
*initLampHeader, lamp_uint16_t mode_index);

This function takes as input an already prepared LaMP
header structure for an INIT packet nd i s its “Length or
packet type” ie d with the s e i ied t e (ssed s
mode_index).
For consistency reasons, the function should modify the
specified header (passed through a pointer to a struct
lamphdr) on when the “control” ie d is set to (0xA8)
and the INIT type (i.e. the mode_index) is a valid one, so if it
is equal to 0x0001 or 0x0002.

lampHeadSetFollowupCtrlType() void lampHeadSetFollowupCtrlType(struct
lamphdr *followupLampHeader, lamp_uint16_t
followup_type);

This function takes as input an already prepared LaMP
header structure for a follow-up control packet and fills its
“Length or packet type” ie d with the s e i ied follow-up
control type (passed as followup_type).
For consistency reasons, the function should modify the
specified header (passed through a pointer to a struct
lamphdr) on when the “control” ie d is set to
FOLLOWUP_CTRL (0xAD) and the FOLLOWUP_CTRL type
(i.e. the followup_type) is a valid one, as defined before
in this document.

lampHeadIncreaseSeq() void lampHeadIncreaseSeq(struct lamphdr
*inpacket_headerptr);

This function takes as input the pointer to a LaMP header
and shall be called to increase by one the sequence number
field. Any other user-specific increasing scheme should be

27

managed with custom functions; however, as the increase
by 1 is mandatory for ACK, INIT and REPORT packets, this
function should be defined.

lampHeadGetData() void lampHeadGetData(byte_t *lampPacket,
lamptype_t *type, unsigned short *id,
unsigned short *seq, unsigned short *len,
struct timefields *timestamp, byte_t
*payload);

This function takes as input the pointer to a LaMP header,
obtained from a received LaMP packet.
It then extracts all the relevant data from the header,
including a pointer to the payload and the timestamp.
The user shall be able to specify a NULL pointer for the fields
which are not of interest, in that case the function should skip
that part of the header.
Instead, when non-NULL pointers are passed, it should store
the header data in the memory locations specified by the
user.
When a payload can be present, the function shall always
 he i the “Length or packet type” is 0. it is it sho d not
store anything in the memory area pointed by payload.
If it is not and the pointer is non-NULL, it should copy the
LaMP payload content inside the memory area pointed by
payload.

It should also manage the byte order (i.e. the conversion
from network to host byte order).

lampEncapsulate() void lampEncapsulate(byte_t *packet, struct
lamphdr *lampHeader, byte_t *data,
lamp_size_t payloadsize);

This function combines a LaMP (optional) payload and
header, the latter in the form of a struct lamphdr
structure.

It can be used if an additional payload needs to be inserted
inside a LaMP packet. If the application does not need to
insert any payload, it can directly send the LaMP header
structure as payload of any other protocol, encapsulating
LaMP, without the need of calling lampEncapsulate().

The function takes as input a buffer in which the full packet
will be put (it should be already allocated to the correct size),
the LaMP header, the pointer to the buffer containing the
payload (byte_t *data) and its size in bytes.

This function must set the “Length or packet type” field,
depending on the length of the payload which is combined
with the header and properly manage its byte order (i.e. the
conversion from host to network byte order).

file:///T:/Francesco/Dropbox/Lenovo%20to%20HP%20to%20Lenovo/LatencyTester/Rawsock_lib/doc/html/rawsock__lamp_8h.html%23a36ba40e02771c7fe5492d0fcc4b91f48

28

lampGetPacketPointers() byte_t *lampGetPacketPointers(byte_t
*pktbuf, struct lamphdr **lampHeader);

This function should be used when a LaMP packet with an
additional payload is received.
Given the full LaMP packet buffer (pktbuf), as an array of
bytes, the function should fill a LaMP header structure
pointer with the pointer to the LaMP header inside pktbuf,
returning the pointer to the payload section inside pktbuf.
No memory is allocated by this function: it only performs
pointer arithmetic to return the proper pointers inside a full
packet buffer.
The case in which a packet with no payload is passed to this
function should be managed and the function should return
NULL if no payload exists.

